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Part I: Foundations of CS

• Introduction to sparse representations & 
compression

• Compressed sensing – motivation and concept

• Information preserving sensing matrices

• Practical sparse reconstruction

• Summary & engineering challenges
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Sparse representations and compression
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Fourier Representations

The Frequency viewpoint (Fourier, 1822):

Signals can be built from the sum of harmonic functions (sine waves) 

Joseph Fourier
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a Gabor ‘atom’

Time-Frequency representations
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Atomic (dictionary) representation: 
� � = ∑ ∑ ��,� × � � − �� ����� = Φ�	��

“Theory of Communication,” J. IEE (London) , 1946

“… a new method of analysing signals is presented in which time and 
frequency play symmetrical parts…”
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Space-Scale representations 

the wavelet viewpoint:

Images can be built of sums of wavelets. These are multi-
resolution edge-like (image) functions. 

“Daubechies, Ten Lectures on Wavelets ,” SIAM 1992 
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and many other representations

… more recently:

chirplets,

curvelets,

edgelets,

wedgelets, …

dictionary learning...
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Coding signals of interest
What is the difference between quantizing a signal/image in the transform 
domain rather than the signal domain?

Quantization in 
wavelet domain

Tom’s nonzero 
wavelet coefficients

Quantization in 
pixel domain

Good representations are efficient – e.g. sparse!
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Sparsity & Compression

A vector x is k-sparse, if only k of its elements are non-zero.

Such vectors have only k-degrees of freedom (k-dimensional) and there 

are “N choose k”, �
� , possible combinations of nonzero coefficients.

�			 ≈ 		Φ	 ⋅ 		�	

� ≈ Φ�	

N

Coding cost: 

�	floats + log! �
� 	bits

= & �	log! � �⁄ 	bits

Coding cost: 

�	floats

= & � 	bits

0	0.5	0	0	0.1	0	 − 0.2	0	0	0	0	0 -
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Compressed sensing: motivation and concepts
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Generalized Sampling

Different ways to measure…
Equivalent to inner product with various functions

pointwise sampling, tomography, coded aperture,…
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Generalized Sampling

Different ways to measure…
Equivalent to inner product with various functions

pointwise sampling, tomography, coded aperture,…
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New Challenges

Challenge #1: Insufficient Measurements

Complete measurements can be costly, time 
consuming and sometimes just impossible!
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New Challenges

Challenge #2: Too much data
e.g. 

DARPA ARGUS-IS 

1.8 Gpixel image sensor

15cm resolution, 12 frames a second

Giving a video rate output:

444 Gbits/s

… but the comms link data rate is:

274 Mbits/s

Currently visible spectrum. What about 
hyperspectral?…
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The new hope: Compressed Sensing

When compressing a signal we typically take lots of samples (sampling 
theorem), move to a transform domain, and then throw most of the 
coefficients away! Can we just sample what we need?

Yes! …and more surprisingly we can do this non-adaptively.

Why can’t we just sample signals at the “Information Rate”?

E. Candès, J. Romberg, and T. Tao, “Robust Uncertainty principles: Exact 
signal reconstruction from highly incomplete freque ncy information,” IEEE 
Trans. Information Theory, 2006

D. Donoho, “Compressed sensing,” IEEE Trans. Information 
Theory, 2006
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Potential applications

Compressed Sensing provides a new way of thinking about signal 
acquisition. 

Applications areas already include:

•Medical imaging

•Hyperspectral imaging

•Astronomical imaging

•Distributed sensing 

•Radar sensing

•Geophysical (seismic) exploration

•High rate A/D conversion 

Rice University single pixel camera 
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Compressed sensing Overview

Compressed Sensing assumes a
compressible set of signals, i.e. 
approximately k-sparse.

Using approximately 

. ≥ & � log!
�
�

random projections for measurements 
we have little or no information loss. 

Signal reconstruction by a nonlinear 
mapping.

Many practical algorithms with 
guaranteed performance e.g. 01 min., 
OMP, CoSaMP, IHT.

Compressible 
set of interest

random projection 
(observation)

nonlinear 
approximation 
(reconstruction)

Observe � ∈ ℝ4	via . ≪ � measurements, � ∈ ℝ6 where � = Φ�
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CS acquisition/reconstruction principle

original “Tom”

Sparsifying 
transform

Wavelet 
image
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CS acquisition/reconstruction principle

X =

2

Observed dataoriginal “Tom”
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CS acquisition/reconstruction principle

X =

2

Observed data
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CS acquisition/reconstruction principle

sparse “Tom”

4

Invert transform

X =
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Information preserving sensing matrices
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Underdetermined (. < �) linear systems 
are not invertible: Φ� = Φ�8 ⇏ � = �
However, they may be invertible restricted 
to the sparse set: Σ; ≔ �: supp(�) ≤ � 		

Uniqueness on Σ; is equivalent to 

C Φ ∩ Σ!� = 0
C(Φ) = {F:ΦF = 0} is null space of Φ

Information preservation

m x1 m x N N x1

m x1 2k x1

We can then recover the original k-sparse vector using the 

following HI	minimization scheme:

�J = argmin
O

	 � I	subject to Φ� = P

Φ

ΦQ
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Robust Null Space Properties

In order to achieve robustness we need to consider stronger NSPs

[Cohen et al. 2009] introduced the notion of Instance Optimality and 
showed that the following are equivalent up to a change in constant C

1. There exists a reconstruction mapping, Δ, such that for all �:
Δ Φ� − � 1 ≤ ST� � 1

where T� � 1 is the 01 best k-term approximation error of �
2. Φ satisfies the following NSP:

FQ 1 ≤ S′T!� F 1
for all F ∈ C(Φ) and all k-sparse supports, Λ.

Informally, null space vectors must be relatively flat. 
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Deterministic Sensing Matrices

Showing the NSP for a given Φ involves combinational computational 
complexity. The coherence of a matrix provides easily (but crude) 
computable guarantees.

Coherence

W Φ = max1YZ[�Y4
ΦZ , Φ�
ΦZ	 Φ�

Using the coherence it is possible to show that Φ is invertible on the 
sparse set if:

� < 1
2 1 + 1

W(Φ)

However, this only guarantees that �~&( .).



IDCOM, University of Edinburgh

Restricted Isometry Property

Low Distortion Embeddings
A useful tool in compressed sensing is the restricted isometry constant 
(RIC), the smallest constant ^� for which:

(1 − ^�) � ! ≤ Φ� ! ≤ 1 + ^� � !

holds for all k-sparse vectors �. 

A matrix Φ with _`a < b provides an embedding (one-to-one mapping) for 
the k-sparse set. _`a also quantifies the robustness of the embedding (low 
distortion).

Random observations – a key insight in compressed sensing is that 
random matrices have small RICs with high probability whenever:

.~& �^!�c! log! � �⁄
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Practical sparse reconstruction
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Sparse Recovery via db Minimization

A key advance in Sparse Representations was the use of the 01
minimization (convex!) as a proxy for 0I reconstruction:

�J = argmin
O

	 � 1	subject to Φ� = P

where the 01 norm is defined as: � 1 = ∑ �ZZ

Intuition:
1. Minimum 01 solutions - - are sparse

2. 01 ball is the “closest” convex set to the bounded 0I ball

Φ� = P
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db	Performance Guarantees

For deterministic matrices 01 minimization guarantees derived from 
coherence [Donoho & Elad 2003] : m~& �! .

For general matrices [Candes 2008] showed:

Theorem: If Φ has RIP ^!� ≤ 2 − 1	 ⟹ 01NSP ⟹ Instance Optimality:

Δ Φ� − � 1 ≤ ST� � 1

Since i.i.d. random matrices are near optimal: f~g a hij k a⁄ 	

Since then it has been shown [Donoho & Tanner 2009] that 01 − 0I
equivalence for sparse vectors and random Φ if: l ≥ `a hij k a⁄ .
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Other Practical Recovery Algorithms

The other main class of practical (polynomial complexity) recovery 
algorithms are “Greedy methods”: Orthogonal Matching Pursuit, 
CoSAMP, Iterative Hard Thresholding…

Aim to solve mixed continuous/discrete 0I minimization problem (non-
convex!) using: (1) Least squares minimization and (2) Hard decisions on 
coefficient selection.

e.g. Iterative Hard Thresholding [Blumensath, D. 2010]: greedy gradient 
projection

� 
m1 = nop � 
 + WΦ- P − Φ� 


Theorem : RIP ^!� ≤ 1/5	 ⟹ lim	x{r}	
→t		 ⟹ Instance Optimality

Performance guarantees come directly from RIP type considerations.
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Summary & Engineering Challenges

Sparse Representations provide a powerful nonlinear model for 
real world signals. 

Sparse signals can be sampled and faithfully reconstructed using 
many fewer samples than predicted by traditional sampling theory. 

Engineering Challenges in CS
• What is the right signal model?

Sometimes obvious, sometimes not. When can we exploit additional 
structure?

• How can/should we sample?
Physical constraints; SNR issues; can we randomly sample; 
exploiting structure; how many measurements?

• What are our application goals?
Reconstruction? Detection? Estimation?
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