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Abstract

We present a method to estimate, based on the hori-
zontal symmetry, an intrinsic coordinate system of faces
scanned in 3D. We show that this coordinate system pro-
vides an excellent basis for subsequent landmark po-
sitioning and model-based refinement such as Active
Shape Models, outperforming other —explicit— land-
mark localisation methods including the commonly-
used ICP+ASM approach.

1. Introduction

The analysis of faces aims at discovering patterns
that determine both variation and similarity of the shape
and texture. This is important for example in surveil-
lance and biometric identification [7, 9] where the goal
is to learn a function that discriminates between individ-
uals, but also in face caricaturing and facial composit-
ing [13, 11] that focus on learning the axes of variation
of specific facial features, as well as medical research
studies and clinical purposes [1, 3] in which groups of
people are classified into carrying a trait or not. In all
cases, the analysis requires an established correspon-
dence between faces. Finding this correspondence is
called registration.

Registration may be carried out (or initialised) man-
ually by placing a set of landmarks in each image, but
for large datasets this will become a tedious if not pro-
hibitive process, and automatic methods may provide
an alternative. In 2D images faces scaled to the same
size are often assumed to be roughly aligned. By mod-
elling the depicted face, e.g. using Active Appear-
ance Models (AAM), a more accurate registration can
be achieved. In 3D images the Iterative Closest Point
(ICP) algorithm computes the translation and rotation
parameters to align one shape to another. Similar to the
AAM method in 2D images, 3D shape models can be
employed for more accurate registration, an example of
which is the Active Shape Model (ASM).

In general the model-based approach is posed as a
refinement of an initial rigid alignment, i.e., when the
feature points (landmarks) of a face have been roughly
determined the model can position them more precisely.
The extent to which it can do this is limited though as it
is a local optimisation rather than global, and so gross
localisation errors unavoidably lead to misregistration.

In this paper we introduce a new method to initialise
face registration that is based on symmetry detection to
find an intrinsic coordinate system of the face. An ar-
bitrary reference shape, e.g. a fixed set of landmarks,
can subsequently be positioned in this reference frame
to provide initial registration. The method is fully au-
tomatic and copes well with cases where big gaps of
missing data exist in the face surface. We compare it
against ICP- and AAM-based registration procedures.
We further investigate in each of the cases if and how
well ASM can refine the resulting estimates.

It should be noted that although people have little
difficulty locating the face and its features, manual an-
notation is not exact either. As has been shown before
and as we confirm in this paper, there is still a consid-
erable amount of variation in the position of manually
placed landmarks. This variation provides a good refer-
ence to assess the performance of automatic methods.

1.1 Landmark-based registration methods

Whereas our method estimates a reference frame
into which any set of landmarks can be positioned, other
methods are based on the detection of specific points di-
rectly. This section describes some approaches.

1.1.1 Iterative closest point

A popular approach is the class of algorithms based on
the iterative closest point technique. In this approach
a sequence of estimates progressively reduce the error
of alignment between two sets of points (here the set of
landmarks against a shape). At each iteration the cor-
respondence between the two point sets is computed.



Based on this, a transformation is computed that re-
duces the error. In our experiments we have used the
publicly available LMICP algorithm [6].

1.1.2 Active appearance models

In principle active appearance models provide a method
of 2D face recognition [5], but we can use it to obtain
a registration of 3D faces. A 3D face scan consists of
three parts; 1) a surface, 2) a texture, and 3) a map-
ping of the texture onto the surface. The texture map-
ping provides a conversion from the 2D image to the 3D
shape, which can be used to map AAM detected points.

In our dataset the mapping defines identical trian-
gles on the surface, ri’D , rgD , rgD , and on the texture,
r3D r2P ¢2P A point p?? in the texture image can
be expressed in terms of the triangle points enclosing it
using barycentric coordinates:

p?? = ;v + tor3? + t5r3” (1)

where (t1,t2,1t3) are the barycentric coordinates. The
corresponding 3D coordinates are found by

p*P = 03P + tor3P + t3r3P 2)
1.2 Active shape models

Active shape models learn the patterns of variabil-
ity (deformation) from a training set of annotated im-
ages. The learned model can subsequently be applied
to iteratively refine a set of points in a new image. An
advantage of this method is that any rigid estimation of
landmarks can now be deformed to fit the specific shape
and thus provides potentially a much better registration.

In [10] this method is modified to work on 3D
shapes. Landmark locations are simply expressed in
3D, and landmark shapes are expressed using the shape
index, which is calculated from the principal curvatures:
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The initial set of points can be estimated using any
preferred method, e.g. ICP (see [10]), AAM, or the
method we propose in the following section.

2. An intrinsic coordinate system

In this section we describe a method to accurately de-
termine an intrinsic coordinate system for any 3D face
shape primarily based on its horizontal symmetry. The
use of symmetry to determine an intrinsic coordinate
system for the face is actually not new. In their early

work on 3D face recognition [2] the authors propose an
iterative approach of guessing and validating a plane of
symmetry based on Gaussian curvature. In fact, our ap-
proach shares some resemblance to this method as we
too derive the symmetry from Gaussian curvature. The
key difference however, is that the method proposed
here computes the plane of symmetry directly and only
from a very small set of points — the local extrema.

2.1 The horizontal axis

We determine the horizontal axis from the local ex-
trema in the curvature of the face. Gaussian curvature
can be defined as the product of the two principal cur-
vatures

K= K1Rk2

with k1 > ko. Thus we can distinguish three types of
shape with extremal curvature: saddles (k1 > 0 > k2),
cups (k1 > ko > 0), and caps (0 > k1 > ko). Let us
denote the points at which K has an extremum

P:{plap2ap37"'} (4)

then two points, p; and p; can only be symmetric if
they are of the same shape type.

Furthermore, if the two points are symmetric on the
face, then the vector n = p; — p; is normal to the plane
of symmetry, A, and the intersection of n with A should
lie at (p; + p;)/2 midway between p, and p;. Since
the face is quasi-symmetric this does not hold exactly
but is reasonably accurate.

Based on the above observations two collections of
vectors can be defined:

V* = {pi — p;|pi, p; of the same type, i # j}  (5)
V™ = {pi — pj|p:, p; of different type,i # j} (6)

The intuition is that symmetry causes a small set of
tightly aligned vectors in V' *, whereas all other vectors
both in V+ and V ~ are more diffuse. We formalise this
intuition by a simple estimation of the density of vectors
pointing in each direction.

ZUGVJr f(u’ ’U)
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computes the density of V+ over a spherical cap of ra-
dius « (in radians) centred on u, with

1 if cos™! 2 <

flu.v) :{ 0 el ®)

otherwise
Similarly we denote p~ to compute the density on V .
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Figure 1. From the local extrema of Gaussian curvature (a) we derive a collection of horizontal
line segments (b). The plane of symmetry is estimated from their midpoints. The points in
this plane maximizing the angle on O provide a robust estimate of the vertical axis (c). The
resulting intrinsic coordinate system is shown in (d).

The plane of symmetry A is characterised by its nor-
mal and its distance to the origin (in world coordinates).
The normal is the horizontal axis of the face

x = argmax p* (u) — p~ (u) ©9)

where the subtraction p~ makes it more robust to in-
cidental alignment of arbitrary vectors. The distance
along @, which we shall denote hg, is estimated from
the midpoints of line segments in V1 subject to f. Let
M = {m;, my, mj3, ...} be those midpoints, then

ho = p1j2({m x}) (10)

is their median projected onto x. Asserting || = 1 this
is directly the distance of A to the origin.

2.2 An origin

Most common in literature is to position the origin
at the nose tip directly [8, 4, 12]. An overlooked fact is
however that most people have a nose that points either
left or right. Forcing the origin to coincide with this
point would therefore break symmetry. A better choice
is to project the point of the nose tip, p;, onto A:

O =p; + (ho — " py)x (11)

P: is obtained from the point with maximum curva-
ture (type cap) close to A.

2.3 The vertical and depth axes

We will now continue with the determination of the
vertical axis, y. The axis of depth, z, will then follow
from the cross product of the first two.

Actually, “the” vertical axis of a face is somewhat ill-
defined. One approach is to put the nose bridge under

a fixed angle [12], but due to the large variation in nose
shapes we found this to give only moderate alignment.
Instead we propose to define y along the two points on
the vertical section that make a maximal angle with O
(see Fig.1(c)), each at least 4cm from O:

(a—0)"(b-0)

a,b) = argmaxl— (12)
@b = e = ol -0
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z = XY (14)

2.4 Aligning two coordinate systems

The alignment of two shapes, faces or landmarks, is
based on their respective intrinsic coordinate systems.
Suppose we have two coordinate systems, (O, R) and
(O',R/), with R = [ y 2] and similar for R/,
then the transformation to align the second onto the first,
for any point p’, is defined as:

p=RR7(p'-0)+0 (15)

Often, a set of landmarks is defined in world coor-
dinates, i.e., O’ = (0,0,0) and R’ = I3 the identity
matrix. In that case Eqn.15 simplifies to p = Rp’ + O.

3. Experiments

A set of 322 faces have been captured with a 3dMD
Face camera system, which produces images of roughly
100,000 triangles spanning 50,000 vertices, but these
numbers vary between scans. The resolution of texture
images is around 2,100x 1,100 pixels.

Each image was manually annotated, and this anno-
tation is used as the ground truth for evaluation. The
same 14 landmark positions were used as in [10] (eye
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Figure 2. Cumulative error distributions

corners, nose bridge between the eyes, nose tip, nose
wings, mouth corners and central top and bottom, chin
tip, and the dip between chin and mouth). A separate set
of five scans was captured and annotated by five differ-
ent people to assess the theoretical error in ground truth
labels. In this case their average position provides the
ground truth.

We divided the scans into 14 equally sized sets. Over
14 rounds the algorithms were evaluated on one set with
training performed on the remaining sets. We report
performance over all rounds combined.

Evaluation is carried out by measuring per face for
all landmarks, P = [p1,p2,.-., P14, the distance in
millimetres to their respective ground truth points, X =

[X1,X2, . ..,X14]. We compute the mean and maximum
Rt

P) = — P 16

WP) = Xle-xl a9

emax(P) = m?X\Pi—Xd (17)

and present their cumulative distribution over all faces.

The results of different registration methods are
shown in Fig.2. It shows the percentage of samples
that have an error below a threshold in millimetres. The
ideal annotation would touch the point (0 mm, 100%).
ICS (Intrinsic Coordinate System) is the method pro-
posed in this paper.

The figures show that ASM is able to refine land-
mark positions for any method. In particular ICS+ASM
seems to be a good combination, annotating more than
half of the scans entirely within 7mm accuracy and with
a mean error below 4mm in 90% of the cases.

4. Conclusions

We have presented a novel algorithm for estimating
the position and orientation of a 3D face scan. We have
demonstrated its power in registering to a set of land-
marks compared to other well known methods.

ICP and ICS combine well with ASM refinement.
Apparently ASM corrects the type of error specific to
rigid initialisation methods. Active appearance models
perform well on their own, but ASM is not a suitable
method for refinement here. Overall the best automatic
registration is achieved by ICS+ASM.

Manual annotation is still much more accurate, but
not perfect either. The results were mainly included to
get a feeling for the accuracy of the ground-truth, and
to allow comparison between different datasets.
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